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Current Grid 



Next-Generation Grid 

Major Adoption of  Renewables -20-30%- 

Distributed Decision-Making – Most Players use Optimization 
Distributed Generation and Elastic Demands -Real-Time Pricing- 
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Weather -Forcing- 

Dynamic Forcings -Weather- Drive Markets 



Dynamic Forcings – Supply (Wind) and Elastic Demands Vary at Higher Frequencies 

Capturing Dynamic Effects is Becoming Critical 
Longer Forecast Horizons and Faster Updates Needed 

Wind 
Ramps 





- Real-Time Balancing of Demand-Supply, Sets LM Prices  - Updated Every 5 Minutes 

Benchmark System (Illinois):  -1900 Buses, 2538 Lines, 870 Loads, and 261 Generators  
                                                    -Daily Generation Cost ~ $O(108) 

Network 

Dynamics -Ramps- 

Forecast Horizon 

- Large-Scale LP/QP  - O(104-106)  - Horizon, Ramps, Transmission Constraints 



Effect of Foresight on Economics - Current Practice 15 Minutes 

Costs Constrained by Solution Time -5 Minutes- 
Potential of  $O(108)/Yr – Increases with Wind and Demand Variability 

LP Size  
105,000 Variables 

-1 hr/Step- 



Computational Performance – Linear Algebra and Warm-Starts  
    IPOPT- Symmetric KKT Matrix (MA57)  vs. CPLEX-Simplex – Unsymmetric Basis Matrix 

IPOPT Constructs Basis for Simplex -In Advance, With Forecast Load- 

No Warm-Start Warm-Start 

Largest Problem in 5 Minutes - 20 Hr Foresight, 240 Steps, 5 Min/Step, 1x106 Variables 

5 min 

Basis is “Robust” 



Uncertainty Currently Handled Through Reserves – Conservative and Expensive 

   1st Stage  
Current Loads and Wind 

2nd Stage  
Future Loads and Wind 

1st Stage Lagrange Multipliers for Network are Implemented Prices 



Decompose at Linear Algebra Level – Key for Scalability 

•  Dispatch with 150 Generators and 6000 Scenarios,    
No Network, O(107) Variables.  600 Times Faster 
Than Serial on 1,000 cores 

•  Scaling Bottlenecks in 1st Stage Dense Schur 
Complement Avoided with Stochastic 
Preconditioner 

•  Strong Scaling on 2,000 cores with O(108) 
Variables and O(105) First-Stage Variables – with 
ScaLAPACK 

•  Further Questions: 
- Is Probability Distribution Correct?  
- What if Scenario Generation is Expensive? 

- Preserve Convergence Properties  (Avoid Lagrangean Relaxation & Benders) 
 -PIPS Solver: QP/LP Barrier,  Schur-Based, Dynamic Load Balancing, MPI 

Fusion Cluster at Argonne 



 Major Advances in Meteorological Models (WRF) 
      Highly Detailed Phenomena 
      High Complexity 4-D Fields (106- 108 State Variables)    

Model Reconciled to Measurements From Meteo Stations 

Data Assimilation -Every 6-12 hours-: 
      3-D Var Courtier, et.al. 1998 

      4-D Var Navon  et.al., 2007 

      Extended and Ensemble Kalman Filter Eversen, et.al. 1998    

http://www.meteomedia.com/ 
http://www.emc.ncep.noaa.gov/gmb/ens/ 

Is WRF Computationally Practical Enough for Dispatch?       



  Weather, Loads, and Generation Exhibit Complex Spatio-Temporal Correlations  

-Correlations Must Be Captured in Forecasting (Not in Practice)- 



Current Time 

Data Assimilation Forecast 

Forming Exact Covariance Matrix is Impractical: 
      1) Create Empirical Distribution using Only Most Relevant States 

      2) Propagate Samples through WRF Model 

Making WRF Computationally Feasible: 
Grid-Targeted Resolutions and Computational Resources 

Jazz Cluster at Argonne National Laboratory 



Validation Results (Illinois, 2006) with NOAA Data  

Temperature [oC] Wind Speed [m/s] 



Integration Uncertainty Quantification & Stochastic UC 
   - WRF Forecast Probability Distribution is NOT in Closed-Form 
   - Generating Each Scenario is Expensive (50-100 Practical) 

How to Generate More Realizations?  Inference Analysis with Resampling 
   1) Sample Weights on Hyperplane                     and Compute  
   2) Solve Stochastic Problem with       Batches of Realizations        

Cost Confidence Intervals 



WRF Resolution and Number of Scenarios Must be Adapted in Real-Time 



Illinois Study (Wind Adoption 20%) 

Wind Power Profiles 



Demand 

Thermal 

Wind 

-  WRF Forecasts are -In General- Accurate with Tight Uncertainty Bounds 

Aggregated Power Profiles -Validation with Real Wind Speed Data- 

 - Inference Analysis Reveals that 30 WRF Samples are Sufficient 
      Cost ~ $474,000, Upper Bound σ2 (1,082 $2), Lower Bound σ2 (1,656 $2) 

 - Excursions Do Occur: Probability Distribution of 3rd Day is Inaccurate! 
      Higher Frequency Data Assimilation (1 hour)? Missing Physics? 100m Sensors? 

Stochastic Optimization Benefits are Limited without UQ 





Manager: Minimizes Energy Costs in Real-Time  
                  Updates Set-Points Every 5-10 Minutes 

Energy Demands and Costs Driven by Weather, Occupancy, and Pricing Structures 

Pittsburgh, PA  2006 

Dynamic Building 
Model (Heat Transfer) 

www.columbia.edu/cu/gsapp/BT/LEVER/  



1hr 

24 hr 

Manager Implicitly Forecasts Demand – Key for Real-Time Pricing & Demand-Response 

Comfort Zone 

24hr Forecast 
  1hr Forecast 

Effect of Foresight on Energy Costs 



Collabora've	  Project:	  Argonne-‐Building	  IQ	  
“Proac've	  Energy	  Management	  for	  Building	  Systems”	  

Mike	  Zimmermann,	  Tom	  Celinski,	  Peter	  Dickinson	  (BIQ),	  and	  Victor	  M.	  Zavala	  (ANL)	  



Weather	  forecast	  

Zone	  temp	  seQngs	  &	  
tenant	  feedback	  

Ambient	  temperature	  

Energy	  costs	  

Start	  'me	  

Pre-‐Cooling	  Schedule	  

Etc	  ...	  

•  Solves Nonlinear Optimal Control Problem with Machine Learning Model 
Solved Every 10 Minutes, Forecast of 1-2 Hours 
Building Model Re-Trained Daily 
Machine Learning Alternative for Large-Scale and Cheap Deployment   

•  Key Trade-Off:  Human Comfort vs. Energy Cost  vs. CO2 emissions 

•  Computational Challenges: Increase Building Spatio-Temporal Resolution   
                           Large-Scale and NonConvex Machine Learning 
                           Physics-Based Models? -Michael Wetter- 

Machine	  Learning	  	  
Model	  

Op'mal	  Temperature	  

Inputs	   Outputs	  



Pre-‐cooling	  Op'mised	  profile	  Original	  profile	  

Comfort	  Zone	  
Exploita1on	  

Fixed	  set-‐point	  

Currently Being Implemented at Argonne’s TCS Building – Deployment 12/2010 

Occupants	  
Leaving	  

Expected Yearly Savings of 15-30% on HVAC Energy – $O(105-106) 





ISO	  

GENCO	  1	  

GENCO	  2	  

GENCO	  G	  

U'lity	  1	  

U'lity	  2	  

U'lity	  C	  

- GENCOs and Utilities Bid in Day-Ahead and Real-Time Markets -5 Minutes- 
- ISO Clears Markets To Maximize Social Welfare under Transmission Constraints 

$ Price 

Quantity 

Key: Generator States Propagated in Time – Ramps and Foresight Affect Market Stability 

Supply  
Function 

Generator 

Supply  
Function 

Utility 

 Cleared Price 



Supply Function-Based Dynamic Game Models Kannan & Zavala, 2010 

  Large, NonConvex Nash and Stackelberg 
  “Simple” Model: Simultaneous Bidding & Market Clearing, No Transmission, Periodic Load 

Horizon 
Players 

Price 

Effect of Ramp Constraints on Market Equilibrium 



Identifying Non-Gaming Behavior 
     Some Players -Intentionally or Unintentionally- Bid Suboptimally 
     Introduces Noise in Equilibrium – Can be Inferred from Data 

Huge Potential for Dynamic Market Models – Realistic, Price Forecasting  
       - Fundamental (Existence, Uniqueness, Stability)  and Computational Questions 





Day-Ahead Market Clearing, Which Units and Lines Should be Turned ON/OFF? 
    ED  O(105-106)  Continuous + UC - O(103)  Integers + Switching - O(104)  Integers 

Further Extensions: Stochastic, Complementarity, AC Power Flow 
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